public interface TreeEnsembleParams extends DecisionTreeParams
Note: Marked as private since this may be made public in the future.
Modifier and Type | Method and Description |
---|---|
Param<String> |
featureSubsetStrategy()
The number of features to consider for splits at each tree node.
|
String |
getFeatureSubsetStrategy() |
Strategy |
getOldStrategy(scala.collection.immutable.Map<Object,Object> categoricalFeatures,
int numClasses,
scala.Enumeration.Value oldAlgo,
Impurity oldImpurity)
Create a Strategy instance to use with the old API.
|
double |
getSubsamplingRate() |
DoubleParam |
subsamplingRate()
Fraction of the training data used for learning each decision tree, in range (0, 1].
|
cacheNodeIds, getCacheNodeIds, getLeafCol, getMaxBins, getMaxDepth, getMaxMemoryInMB, getMinInfoGain, getMinInstancesPerNode, getMinWeightFractionPerNode, getOldStrategy, leafCol, maxBins, maxDepth, maxMemoryInMB, minInfoGain, minInstancesPerNode, minWeightFractionPerNode, setLeafCol
extractInstances, extractInstances, validateAndTransformSchema
getLabelCol, labelCol
featuresCol, getFeaturesCol
getPredictionCol, predictionCol
clear, copy, copyValues, defaultCopy, defaultParamMap, explainParam, explainParams, extractParamMap, extractParamMap, get, getDefault, getOrDefault, getParam, hasDefault, hasParam, isDefined, isSet, paramMap, params, set, set, set, setDefault, setDefault, shouldOwn
toString, uid
checkpointInterval, getCheckpointInterval
getWeightCol, weightCol
DoubleParam subsamplingRate()
double getSubsamplingRate()
Strategy getOldStrategy(scala.collection.immutable.Map<Object,Object> categoricalFeatures, int numClasses, scala.Enumeration.Value oldAlgo, Impurity oldImpurity)
categoricalFeatures
- (undocumented)numClasses
- (undocumented)oldAlgo
- (undocumented)oldImpurity
- (undocumented)Param<String> featureSubsetStrategy()
These various settings are based on the following references: - log2: tested in Breiman (2001) - sqrt: recommended by Breiman manual for random forests - The defaults of sqrt (classification) and onethird (regression) match the R randomForest package.
String getFeatureSubsetStrategy()