public class DecisionTreeRegressor extends Regressor<Vector,DecisionTreeRegressor,DecisionTreeRegressionModel> implements DecisionTreeRegressorParams, DefaultParamsWritable
Constructor and Description |
---|
DecisionTreeRegressor() |
DecisionTreeRegressor(String uid) |
Modifier and Type | Method and Description |
---|---|
BooleanParam |
cacheNodeIds()
If false, the algorithm will pass trees to executors to match instances with nodes.
|
IntParam |
checkpointInterval()
Param for set checkpoint interval (>= 1) or disable checkpoint (-1).
|
DecisionTreeRegressor |
copy(ParamMap extra)
Creates a copy of this instance with the same UID and some extra params.
|
Param<String> |
impurity()
Criterion used for information gain calculation (case-insensitive).
|
Param<String> |
leafCol()
Leaf indices column name.
|
static DecisionTreeRegressor |
load(String path) |
IntParam |
maxBins()
Maximum number of bins used for discretizing continuous features and for choosing how to split
on features at each node.
|
IntParam |
maxDepth()
Maximum depth of the tree (nonnegative).
|
IntParam |
maxMemoryInMB()
Maximum memory in MB allocated to histogram aggregation.
|
DoubleParam |
minInfoGain()
Minimum information gain for a split to be considered at a tree node.
|
IntParam |
minInstancesPerNode()
Minimum number of instances each child must have after split.
|
DoubleParam |
minWeightFractionPerNode()
Minimum fraction of the weighted sample count that each child must have after split.
|
static MLReader<T> |
read() |
LongParam |
seed()
Param for random seed.
|
DecisionTreeRegressor |
setCacheNodeIds(boolean value) |
DecisionTreeRegressor |
setCheckpointInterval(int value)
Specifies how often to checkpoint the cached node IDs.
|
DecisionTreeRegressor |
setImpurity(String value) |
DecisionTreeRegressor |
setMaxBins(int value) |
DecisionTreeRegressor |
setMaxDepth(int value) |
DecisionTreeRegressor |
setMaxMemoryInMB(int value) |
DecisionTreeRegressor |
setMinInfoGain(double value) |
DecisionTreeRegressor |
setMinInstancesPerNode(int value) |
DecisionTreeRegressor |
setMinWeightFractionPerNode(double value) |
DecisionTreeRegressor |
setSeed(long value) |
DecisionTreeRegressor |
setVarianceCol(String value) |
DecisionTreeRegressor |
setWeightCol(String value)
Sets the value of param
weightCol . |
static String[] |
supportedImpurities()
Accessor for supported impurities: variance
|
String |
uid()
An immutable unique ID for the object and its derivatives.
|
Param<String> |
varianceCol()
Param for Column name for the biased sample variance of prediction.
|
Param<String> |
weightCol()
Param for weight column name.
|
featuresCol, fit, labelCol, predictionCol, setFeaturesCol, setLabelCol, setPredictionCol, transformSchema
params
equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
validateAndTransformSchema
getCacheNodeIds, getLeafCol, getMaxBins, getMaxDepth, getMaxMemoryInMB, getMinInfoGain, getMinInstancesPerNode, getMinWeightFractionPerNode, getOldStrategy, setLeafCol
extractInstances, extractInstances
getLabelCol, labelCol
featuresCol, getFeaturesCol
getPredictionCol, predictionCol
clear, copyValues, defaultCopy, defaultParamMap, explainParam, explainParams, extractParamMap, extractParamMap, get, getDefault, getOrDefault, getParam, hasDefault, hasParam, isDefined, isSet, paramMap, params, set, set, set, setDefault, setDefault, shouldOwn
toString
getCheckpointInterval
getWeightCol
getImpurity, getOldImpurity
getVarianceCol
write
save
$init$, initializeForcefully, initializeLogIfNecessary, initializeLogIfNecessary, initializeLogIfNecessary$default$2, initLock, isTraceEnabled, log, logDebug, logDebug, logError, logError, logInfo, logInfo, logName, logTrace, logTrace, logWarning, logWarning, org$apache$spark$internal$Logging$$log__$eq, org$apache$spark$internal$Logging$$log_, uninitialize
public DecisionTreeRegressor(String uid)
public DecisionTreeRegressor()
public static final String[] supportedImpurities()
public static DecisionTreeRegressor load(String path)
public static MLReader<T> read()
public final Param<String> varianceCol()
HasVarianceCol
varianceCol
in interface HasVarianceCol
public final Param<String> impurity()
HasVarianceImpurity
impurity
in interface HasVarianceImpurity
public final Param<String> leafCol()
DecisionTreeParams
leafCol
in interface DecisionTreeParams
public final IntParam maxDepth()
DecisionTreeParams
maxDepth
in interface DecisionTreeParams
public final IntParam maxBins()
DecisionTreeParams
maxBins
in interface DecisionTreeParams
public final IntParam minInstancesPerNode()
DecisionTreeParams
minInstancesPerNode
in interface DecisionTreeParams
public final DoubleParam minWeightFractionPerNode()
DecisionTreeParams
minWeightFractionPerNode
in interface DecisionTreeParams
public final DoubleParam minInfoGain()
DecisionTreeParams
minInfoGain
in interface DecisionTreeParams
public final IntParam maxMemoryInMB()
DecisionTreeParams
maxMemoryInMB
in interface DecisionTreeParams
public final BooleanParam cacheNodeIds()
DecisionTreeParams
cacheNodeIds
in interface DecisionTreeParams
public final Param<String> weightCol()
HasWeightCol
weightCol
in interface HasWeightCol
public final LongParam seed()
HasSeed
public final IntParam checkpointInterval()
HasCheckpointInterval
checkpointInterval
in interface HasCheckpointInterval
public String uid()
Identifiable
uid
in interface Identifiable
public DecisionTreeRegressor setMaxDepth(int value)
public DecisionTreeRegressor setMaxBins(int value)
public DecisionTreeRegressor setMinInstancesPerNode(int value)
public DecisionTreeRegressor setMinWeightFractionPerNode(double value)
public DecisionTreeRegressor setMinInfoGain(double value)
public DecisionTreeRegressor setMaxMemoryInMB(int value)
public DecisionTreeRegressor setCacheNodeIds(boolean value)
public DecisionTreeRegressor setCheckpointInterval(int value)
SparkContext
.
Must be at least 1.
(default = 10)value
- (undocumented)public DecisionTreeRegressor setImpurity(String value)
public DecisionTreeRegressor setSeed(long value)
public DecisionTreeRegressor setVarianceCol(String value)
public DecisionTreeRegressor setWeightCol(String value)
weightCol
.
If this is not set or empty, we treat all instance weights as 1.0.
Default is not set, so all instances have weight one.
value
- (undocumented)public DecisionTreeRegressor copy(ParamMap extra)
Params
defaultCopy()
.copy
in interface Params
copy
in class Predictor<Vector,DecisionTreeRegressor,DecisionTreeRegressionModel>
extra
- (undocumented)